Brief information about the project

Name of the project	AP09260687 «Technology for the extraction and
	utilization of toxic compounds of industrial wastewater».
Relevance	The continuous growth and development of the
	chemical, pulp and paper, petrochemical, chemical and
	pharmaceutical industries lead to a constant increase in
	environmental pollution with dangerous organic
	compounds. One of the highest environmental loads is
	experienced by water resources, with an increasing number
	of highly toxic compounds entering the waters of water
	basins used by humans for household needs. Therefore,
	one of the primary tasks of modern science is to solve the
	problem of water pollution with highly toxic organic
	compounds, which requires detailed physical and chemical
	research and the development of new technological
	solutions.
Purpose	Objective of the project – the creation of a new 2-zone
	filter-reactor for purification of waste waters from highly
	toxic organic substances
Objectives	1) Synthesis of nanostructured Fe-, Mn-, Co-
	containing mono-, bimetallic and magnetic catalytic
	systems using organic and inorganic carriers (polystyrene,
	Al ₂ O ₃ , SiO ₂ , polyethylenimine).
	2) Synthesis of nanostructured biocatalysts based on
	horseradish peroxidase using organic and inorganic
	carriers (polystyrene, chitosan, Al_2O_3 , SiO_2 ,
	polyethylenimine).
	3) Research of the destruction of highly toxic organic
	compounds (phenol, pyrocatechin, cresol), using enzymes
	to identify the characteristic principles of biocatalytic
	reactions;
	4) Research of the influence of parameters and
	methods of synthesis of catalytic and blocatalytic systems
	on the activity of oxidation of highly toxic organic
	compounds (pnenoi, pyrocatechin, chrysol);
	someounder
	6) Optimization of biocotalysts and papacetalysts:
	7) Creating a prototype of a 2-zone filter-reactor:
	8) Development of technological modes of operation of a
	2-zone filter-reactor:
	9) Optimization of the 2-zone filter-reactor
Expected and achieved results	Highly efficient, selective technologically and
Expected and demoved results	economically advantageous catalysts for wastewater
	treatment from phenols have been developed. A highly
	efficient, environmentally friendly, cost-effective nano-
	and biotechnology for wastewater treatment from phenols
	has been created. The proposed catalytic technology for
	wastewater treatment from waste water is highly efficient
	and environmentally friendly. The implementation of this
	technology is ensured by the availability of industrially

	available nanostructured polymers and carriers for the production of nanocatalysts, an environmentally friendly and cheap oxidizer, simple hardware design, low temperature of the processes of nano- and bio-catalytic neutralization from VOS and the absence of aggressive components in reaction products. The combined use of both nano and biocatalysts in one reactor unit will significantly increase the efficiency of water purification from highly toxic organic compounds and will become a significant prerequisite for the creation of effective technology and industrial implementation.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 Muktaly Dinara PhD, h-index – 2. Scopus author ID: 557195522581. ORCID ID: https://orcid.org/0000- 0002-1139-5488. Hideki Kurakawa - is a Professor and Dean Of the graduate school of science and technology at Saitama University. h-index – 14. Scopus author ID: 7202656488 https://orcid.org/0000-0001-9113-0680. Shakiyeva T.V. candidate of chemical Sciences, h- index – 4. Scopus author ID: 55911739700. ORCID ID: ID: https://orcid.org/0000-0002-9664-442x Dossumova B.T. candidate of chemical Sciences, h-index – 3. Scopus author ID: 57210592713. ORCID ID: https://orcid.org/0000-0003-4126-2907. Sassykova L.R., candidate of chemical Sciences, h- index – 15. Scopus Author ID: 56178673800. ORCID ID: https://orcid.org/0000-0003-4721-9758 Baizhomartov B.B. PhD, h-index – 3. Scopus author ID: 55911449500. ORCID ID: https://orcid.org/0000-0002-3221-114x. Dzhatkambaeva U.N. master's degree, h-index – 3. ORCID ID: https://orcid.org/0000-0002-3221-114x. Dzhatkambaeva U.N. master's degree, h-index – 3. ORCID ID: https://orcid.org/0000-0001-8216-3206 & Ilmuratova M.S. h-index – 1. Scopus Author ID:57262368200. ORCID ID: https://orcid.org/0000-0001-8216-3206
List of publications with links to	1 T.V. Shakiyeva, L.R. Sassykova, B.T. Dossumova,
	D. Muktaly, B.Balzhomartov, H.Kurokawa: Natural waters and industrial waste water, waste water with phenol-containing compounds, methods of water purification //Rasayan J. Chem., 16(3), 1591- 1598(2023) http://doi.org/10.31788/RJC.2023.1638403 2 L.R. Sassykova, T.V. Shakiyeva, B.T. Dossumova, M. S. Ilmuratova, D. Muktaly, Zh. M. Zhaxibayeva, A.R. Sassykova3 and B. Baizhomartov. Catalysts, magnetic composites for removal of phenol-containing compounds from wastewater. //Rasayan J. Chem., 16(3), 1605-1612(2023) http://doi.org/10.31788/RJC.2023.1638420 3 Binara T. Dossumova, Tatyana V. Shakiyeva, Dinara Muktaly, Larissa R. Sassykova. Bedelzhan B.

	Baizhomartov and Sendilvelan Subramanian. Synthesis,
	Characterization of Magnetic Composites and Testing of
	Their Activity in Liquid-Phase Oxidation of Phenol with
	Oxygen // ChemEngineering2022, 6, 68 P. 1065-
	1071, Процентиль 75.
	(https://doi.org/10.3390/chemengineering6050068)
	4 Ilmuratova M. S., Sassykova L.R., Shakiyeva T.V.,
	Muktaly D. Methods for treating wastewater from organic
	pollutants // OIL AND GAS 2023 V. 3 (135) P.
	164-182. (in the Kazakh).
	5 Dossumova B.T., Sassykova L.R., Shakiyeva T.V.,
	Muktaly D., Batyrbayeva A.A., Kozhaisakova M.A.
	Catalysts based on iron oxides for wastewater purification
	from phenolic compounds: synthesis, physicochemical
	analysis, determination of catalytic activity
	//ChemEngineering
	https://doi.org/10.3390/chemengineering8010008
Patents	-

Figure – Laboratory installation of a 2-zone filter reactor for phenol oxidation